HIGHLIGHTS OF PRESCRIBING INFORMATION
These highlights do not include all the information needed to use STARLIX safely and effectively. See full prescribing information for STARLIX.

STARLIX® (nateglinide) tablets, for oral use
Initial U.S. Approval: 2000

-------------------------INDICATIONS AND USAGE-------------------------

STARLIX (nateglinide) is a glinide indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. (1)

Limitations of Use: Not for treating type 1 diabetes mellitus or diabetes ketoacidosis (1)

-------------------------DOSEAGE AND ADMINISTRATION-------------------------

- Recommended dose is 120 mg three times daily
- In patients who are near glycemic goal when treatment is initiated, 60 mg three times daily may be administered. (2)
- Administer 1 to 30 minutes before meals (2)
- If a meal is skipped, skip the scheduled dose to reduce the risk of hypoglycemia. (2, 5.1)

-------------------------DOSEAGE FORMS AND STRENGTHS-------------------------

Tablets: 60 mg and 120 mg (3)

-------------------------CONTRAINICATIONS-------------------------

- History of hypersensitivity to nateglinide inactive ingredients (4)

-------------------------WARNINGS AND PRECAUTIONS-------------------------

- Hypoglycemia: STARLIX may cause hypoglycemia. Administer before meals to reduce the risk of hypoglycemia. Skip the scheduled dose of STARLIX if a meal is skipped to reduce the risk of hypoglycemia. (5.1)

- Macrovascular outcomes: There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with STARLIX. (5.2)

-------------------------ADVERSE REACTIONS-------------------------

- Common adverse reactions associated with STARLIX (3% or greater incidence) were upper respiratory tract infection, back pain, flu symptoms, dizziness, arthropathy, diarrhea. (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact Novartis at 1-888-669-6682 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

-------------------------DRUG INTERACTIONS-------------------------

- Drugs That May Increase the Potential for Hypoglycemia: STARLIX dose reductions and increased frequency of glucose monitoring may be required when co-administered (7)

- Drugs That May Increase the Potential for Hyperglycemia: STARLIX dose increases and increased frequency of glucose monitoring may be required when co-administered (7)

- Drugs That May Blunt Signs and Symptoms of Hypoglycemia: Increased frequency of glucose monitoring may be required when co-administered (7)

-------------------------USE IN SPECIFIC POPULATIONS-------------------------

- Nursing mothers: Discontinue STARLIX or nursing (8.3)

See 17 for PATIENT COUNSELING INFORMATION

Revised: 3/2017

FULL PRESCRIBING INFORMATION: CONTENTS*

1 INDICATIONS AND USAGE
2 DOSAGE AND ADMINISTRATION
3 DOSAGE FORMS AND STRENGTHS
4 CONTRAINDICATIONS
5 WARNINGS AND PRECAUTIONS
5.1 Hypoglycemia
5.2 Macrovascular Outcomes
6 ADVERSE REACTIONS
6.1 Clinical Trials Experience
6.2 Post Marketing Experience
7 DRUG INTERACTIONS
8 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy
8.3 Nursing Mothers
8.4 Pediatric Use
8.5 Geriatric Use
8.6 Renal Impairment
8.7 Hepatic Impairment
9 CLINICAL PHARMACOLOGY
9.1 Mechanism of Action
9.2 Pharmacodynamics
9.3 Pharmacokinetics
10 OVERDOSAGE
11 DESCRIPTION
12 CLINICAL PHARMACOLOGY
12.1 Mechanism of Action
12.2 Pharmacodynamics
12.3 Pharmacokinetics
13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
14 CLINICAL STUDIES
14.1 Monotherapy
14.2 Monotherapy Compared to Glyburide
14.3 Monotherapy and in Combination with Metformin
14.4 Add-On Combination Therapy with Rosiglitazone
14.5 Add-On Combination Therapy with Glyburide
16 HOW SUPPLIED/STORAGE AND HANDLING
17 PATIENT COUNSELING INFORMATION

* Sections or subsections omitted from the full prescribing information are not listed.
FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE
STARLIX is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.

Limitations of Use:
STARLIX should not be used in patients with type 1 diabetes mellitus or for the treatment of diabetic ketoacidosis.

2 DOSAGE AND ADMINISTRATION
The recommended dose of STARLIX is 120 mg orally three times daily before meals.
The recommended dose of STARLIX is 60 mg orally three times daily before meals in patients who are near glycemic goal when treatment is initiated.
Instruct patients to take STARLIX 1 to 30 minutes before meals.
In patients who skip meals, instruct patients to skip the scheduled dose of STARLIX to reduce the risk of hypoglycemia [see Warnings and Precautions (5.1)].

3 DOSAGE FORMS AND STRENGTHS
- 60 mg tablets: pink, round, beveled edge film-coated tablet with “STARLIX” debossed on one side and “60” on the other
- 120 mg tablets: yellow, ovaloid film-coated tablet with “STARLIX” debossed on one side and “120” on the other

4 CONTRAINDICATIONS
STARLIX is contraindicated in patients with a history of hypersensitivity to STARLIX or its active ingredients.

5 WARNINGS AND PRECAUTIONS

5.1 Hypoglycemia
All glinides, including STARLIX, can cause hypoglycemia [see Adverse Reactions (6.1)]. Severe hypoglycemia can cause seizures, may be life-threatening, or cause death. Hypoglycemia can impair concentration ability and reaction time; this may place an individual and others at risk in situations where these abilities are important (e.g., driving or operating other machinery).

Hypoglycemia can happen suddenly and symptoms may differ in each individual and change over time in the same individual. Symptomatic awareness of hypoglycemia may be less pronounced in patients with longstanding diabetes, in patients with diabetic neuropathy (nerve disease), in patients using medications that block the sympathetic nervous system (e.g., beta-blockers) [see Drug Interactions (7)], or in patients who experience recurrent hypoglycemia.

Factors which may increase the risk of hypoglycemia include changes in meal pattern (e.g., macronutrient content), changes in level of physical activity, changes to coadministered medication [see Drug Interactions (7)], and concomitant use with other antidiabetic agents. Patients with renal or hepatic impairment may be at higher risk of hypoglycemia [see Use in Specific Populations (8.6, 8.7)].

Patients should take STARLIX before meals and be instructed to skip the dose of STARLIX if a meal is skipped [see Dosage and Administration (2)]. Patients and caregivers must be educated to recognize and manage hypoglycemia. Self-monitoring of blood glucose plays an essential role in the prevention and management of hypoglycemia. In patients at higher risk for hypoglycemia and patients who have reduced symptomatic awareness of hypoglycemia, increased frequency of blood glucose monitoring is recommended.

5.2 Macrovascular Outcomes
There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with STARLIX.
6 ADVERSE REACTIONS

The following serious adverse reaction is also described elsewhere in the labeling:

Hypoglycemia [see Warnings and Precautions (5.1)]

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

In clinical trials, approximately 2,600 patients with type 2 diabetes mellitus were treated with STARLIX. Of these, approximately 1,335 patients were treated for 6 months or longer and approximately 190 patients for one year or longer. Table 1 shows the most common adverse reactions associated with STARLIX.

Table 1: Adverse Reactions other than Hypoglycemia (%) occurring Greater than or Equal to 2% in STARLIX-Treated Patients from Pool of 12 to 64 week Placebo Controlled Trials

<table>
<thead>
<tr>
<th>Preferred Term</th>
<th>Placebo</th>
<th>STARLIX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=458</td>
<td>N=1441</td>
</tr>
<tr>
<td>Upper Respiratory Infection</td>
<td>8.1</td>
<td>10.5</td>
</tr>
<tr>
<td>Back Pain</td>
<td>3.7</td>
<td>4.0</td>
</tr>
<tr>
<td>Flu Symptoms</td>
<td>2.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Dizziness</td>
<td>2.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Arthropathy</td>
<td>2.2</td>
<td>3.3</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>3.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Accidental Trauma</td>
<td>1.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>2.6</td>
<td>2.7</td>
</tr>
<tr>
<td>Coughing</td>
<td>2.2</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Hypoglycemia

Episodes of severe hypoglycemia (plasma glucose less than 36 mg/dL) were reported in two patients treated with STARLIX. Non-severe hypoglycemia occurred in 2.4% of STARLIX treated patients and 0.4% of placebo treated patients [see Warnings and Precautions (5.1)].

Weight Gain

Patients treated with STARLIX had statistically significant mean increases in weight compared to placebo. In clinical trials, the mean weight increases with STARLIX 60 mg (3 times daily) and STARLIX 120 mg (3 times daily) compared to placebo were 1.0 kg and 1.6 kg respectively.

Laboratory Test

Increases in Uric Acid: There were increases in mean uric acid levels for patients treated with STARLIX alone, STARLIX in combination with metformin, metformin alone, and glyburide alone. The respective differences from placebo were 0.29 mg/dL, 0.45 mg/dL, 0.28 mg/dL, and 0.19 mg/dL.

6.2 Postmarketing Experience

The following adverse reactions have been identified during post-approval use of STARLIX. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

- Hypersensitivity reactions: Rash, itching, and urticaria
- Hepatobiliary Disorders: Jaundice, cholestatic hepatitis, and elevated liver enzymes
Table 2 includes a list of drugs with clinically important drug interactions when concomitantly administered or withdrawn with STARLIX and instructions for managing or preventing them.

**Table 2: Clinically Significant Drug Interactions with STARLIX**

<table>
<thead>
<tr>
<th>Drugs That May Increase the Blood-Glucose-Lowering Effect of STARLIX and Susceptibility to Hypoglycemia</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Drugs:</strong></td>
</tr>
<tr>
<td><strong>Intervention:</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drugs and Herbals That May Reduce the Blood-Glucose-Lowering Effect of STARLIX and Increase Susceptibility to Hyperglycemia</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Drugs:</strong></td>
</tr>
<tr>
<td><strong>Intervention:</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drugs That May Blunt Signs and Symptoms of Hypoglycemia</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Drugs:</strong></td>
</tr>
<tr>
<td><strong>Intervention:</strong></td>
</tr>
</tbody>
</table>

## 8 USE IN SPECIFIC POPULATIONS

### 8.1 Pregnancy

Pregnancy Category C

There are no adequate and well-controlled studies of nateglinide in pregnant women. It is unknown whether STARLIX can cause fetal harm when administered to a pregnant woman. STARLIX should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

In the rabbit, embryonic development was adversely affected and the incidence of gall bladder agenesis or small gallbladder was increased at a dose of 500 mg/kg (approximately 27 times the human therapeutic exposure of 120 mg three times daily, based on body surface area). Nateglinide was not teratogenic in rats at doses up to 1,000 mg/kg (approximately 27 times the human therapeutic exposure based on body surface area).

### 8.3 Nursing Mothers

It is not known whether nateglinide is excreted in human milk. Nateglinide is excreted in rat milk. Offspring of rats exposed to 1,000 mg/kg nateglinide (approximately 27 times the human therapeutic exposure of 120 mg three times daily, based on body surface area) had lower body weight. Because the potential for hypoglycemia in nursing infants may exist, a decision should be made as to whether STARLIX should be discontinued in nursing mothers, or if mothers should discontinue nursing.

### 8.4 Pediatric Use

The safety and effectiveness of STARLIX have not been established in pediatric patients.

### 8.5 Geriatric Use

436 patients 65 years and older, and 80 patients 75 years and older were exposed to STARLIX in clinical studies. No differences were observed in safety or efficacy of STARLIX between patients age 65 and over, and those under age 65. However, greater sensitivity of some older individuals to STARLIX therapy cannot be ruled out.
8.6 Renal Impairment
No dosage adjustment is recommended in patients with mild to severe renal impairment [see Clinical Pharmacology (12.3)].

8.7 Hepatic Impairment
No dose adjustment is recommended for patients with mild hepatic impairment. Use of STARLIX in patients with moderate-to-severe hepatic impairment has not been studied and therefore, should be used with caution in these patients [see Clinical Pharmacology (12.3)].

10 OVERDOSAGE
There have been no instances of overdose with STARLIX in clinical trials. However, an overdose may result in an exaggerated glucose-lowering effect with the development of hypoglycemic symptoms. Hypoglycemic symptoms without loss of consciousness or neurological findings should be treated with oral glucose and adjustments in dosage and/or meal patterns. Severe hypoglycemic reactions with coma, seizure, or other neurological symptoms should be treated with intravenous glucose. As STARLIX is highly protein bound, dialysis is not an efficient means of removing it from the blood.

11 DESCRIPTION
STARLIX (nateglinide) is an oral blood glucose-lowering drug of the glinide class. STARLIX, (-)-N-[(trans-4-isopropylcyclohexane)carbonyl]-D-phenylalanine, is structurally unrelated to the oral sulfonylurea insulin secretagogues. The structural formula is as shown:

\[
\text{Nateglinide}
\]

Nateglinide is a white powder with a molecular weight of 317.43. It is freely soluble in methanol, ethanol, and chloroform, soluble in ether, sparingly soluble in acetonitrile and octanol, and practically insoluble in water. STARLIX biconvex tablets contain 60 mg, or 120 mg, of nateglinide for oral administration.

Inactive Ingredients: colloidal silicon dioxide, croscarmellose sodium, hydroxypropyl methylcellulose, iron oxides (red or yellow), lactose monohydrate, magnesium stearate, microcrystalline cellulose, polyethylene glycol, povidone, talc, and titanium dioxide.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action
Nateglinide lowers blood glucose levels by stimulating insulin secretion from the pancreas. This action is dependent upon functioning beta-cells in the pancreatic islets. Nateglinide interacts with the ATP-sensitive potassium (K+ATP) channel on pancreatic beta-cells. The subsequent depolarization of the beta cell opens the calcium channel, producing calcium influx and insulin secretion. The extent of insulin release is glucose dependent and diminishes at low glucose levels. Nateglinide is highly tissue selective with low affinity for heart and skeletal muscle.

12.2 Pharmacodynamics
STARLIX stimulates pancreatic insulin secretion within 20 minutes of oral administration. When STARLIX is dosed before meals, the peak rise in plasma insulin occurs approximately 1 hour after dosing and falls to baseline by 4 hours after dosing.
12.3 Pharmacokinetics

In patients with Type 2 diabetes, multiple dose administration of nateglinide over the dosage range of 60 mg to 240 mg shows linear pharmacokinetics for both AUC and \( C_{\text{max}} \). In patients with Type 2 diabetes, there is no apparent accumulation of nateglinide upon multiple dosing of up to 240 mg three times daily for 7 days.

**Absorption**

Absolute bioavailability of nateglinide is approximately 73%. Plasma profiles are characterized by multiple plasma concentration peaks when nateglinide is administered under fasting conditions. This effect is diminished when nateglinide is taken prior to a meal. Following oral administration immediately prior to a meal, the mean peak plasma nateglinide concentrations (\( C_{\text{max}} \)) generally occur within 1 hour (\( T_{\text{max}} \)) after dosing. \( T_{\text{max}} \) is independent of dose.

The pharmacokinetics of nateglinide are not affected by the composition of a meal (high protein, fat, or carbohydrate). However, peak plasma levels are significantly reduced when STARLIX is administered 10 minutes prior to a liquid meal as compared to solid meal. When given with or after meals, the extent of nateglinide absorption (AUC) remains unaffected. However, there is a delay in the rate of absorption characterized by a decrease in \( C_{\text{max}} \) and a delay in time to peak plasma concentration (\( T_{\text{max}} \)).

STARLIX did not have any effect on gastric emptying in healthy subjects as assessed by acetaminophen testing.

**Distribution**

Following intravenous (IV) administration of nateglinide, the steady-state volume of distribution of nateglinide is estimated to be approximately 10 L in healthy subjects. Nateglinide is extensively bound (98%) to serum proteins, primarily serum albumin, and to a lesser extent \( \alpha_1 \) acid glycoprotein. The extent of serum protein binding is independent of drug concentration over the test range of 0.1 to 10 mcg/mL.

**Elimination**

In healthy volunteers and patients with type 2 diabetes mellitus, nateglinide plasma concentrations declined with an average elimination half-life of approximately 1.5 hours.

**Metabolism**

*In vitro* drug metabolism studies indicate that STARLIX is predominantly metabolized by the cytochrome P450 isozyme CYP2C9 (70%) and to a lesser extent CYP3A4 (30%).

The major routes of metabolism are hydroxylation followed by glucuronide conjugation. The major metabolites are less potent antidiabetic agents than nateglinide. The isoprene minor metabolite possesses potency similar to that of the parent compound nateglinide.

**Excretion**

Nateglinide and its metabolites are rapidly and completely eliminated following oral administration. Eighty-three percent of the \( 14^C \)-nateglinide was excreted in the urine with an additional 10% eliminated in the feces. Approximately 16% of the \( 14^C \)-nateglinide was excreted in the urine as parent compound.

**Specific Populations**

**Renal Impairment**

No pharmacokinetic data are available in subjects with mild renal impairment (CrCl 60 to 89 mL/min). Compared to healthy matched subjects, patients with type 2 diabetes mellitus and moderate and severe renal impairment (CrCl 15-50 mL/min) not on dialysis displayed similar apparent clearance, AUC, and \( C_{\text{max}} \). Patients with type 2 diabetes and renal failure on dialysis exhibited reduced overall drug exposure (\( C_{\text{max}} \) decreased by 49%; not statistically significant). However, hemodialysis patients also experienced reductions in plasma protein binding compared to the matched healthy volunteers.

**Hepatic Impairment**

In patients with mild hepatic impairment, the mean increase in \( C_{\text{max}} \) and AUC of nateglinide were 37% and 30% respectively, as compared to healthy matched control subjects. There is no data on pharmacokinetics of STARLIX in patients with moderate-to-severe hepatic impairment.
**Gender**

No clinically significant differences in nateglinide pharmacokinetics were observed between men and women.

**Race**

Results of a population pharmacokinetic analysis including subjects of Caucasian, Black, and other ethnic origins suggest that race has little influence on the pharmacokinetics of nateglinide.

**Age**

Age does not influence the pharmacokinetic properties of nateglinide.

**Drug Interactions:**

**In vitro assessment of drug interactions**

STARLIX is a potential inhibitor of the CYP2C9 isoenzyme *in vivo* as indicated by its ability to inhibit the *in vitro* metabolism of tolbutamide. Inhibition of CYP3A4 metabolic reactions was not detected *in vitro* experiments.

*In vitro* displacement studies with highly protein-bound drugs such as furosemide, propranolol, captopril, nicardipine, pravastatin, glyburide, warfarin, phenytoin, acetylsalicylic acid, tolbutamide, and metformin showed no influence on the extent of nateglinide protein binding. Similarly, nateglinide had no influence on the serum protein binding of propranolol, glyburide, nicardipine, warfarin, phenytoin, acetylsalicylic acid, and tolbutamide *in vitro*. However, prudent evaluation of individual cases is warranted in the clinical setting.

**In vivo assessment of drug interactions**

The effect of coadministered drugs on the pharmacokinetics of nateglinide and the effect of nateglinide on pharmacokinetics of coadministered drugs are shown in Tables 3 and 4. No clinically relevant change in pharmacokinetic parameters of either agent was reported when nateglinide was coadministered with glyburide, metformin, digoxin, warfarin, and diclofenac.

**Table 3: Effect of Coadministered Drugs on Pharmacokinetics of Nateglinide**

<table>
<thead>
<tr>
<th>Coadministered drug</th>
<th>Dosing regimen of coadministered drug</th>
<th>Dosing regimen of nateglinide</th>
<th>Change in C&lt;sub&gt;max&lt;/sub&gt;</th>
<th>Change in AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyburide</td>
<td>10 mg once daily for 3 weeks</td>
<td>120 mg three times a day, single dose</td>
<td>8.78% ↓</td>
<td>3.53 % ↓</td>
</tr>
<tr>
<td>Metformin</td>
<td>500 mg three times a day for 3 weeks</td>
<td>120 mg three times a day, single dose</td>
<td>AM: 7.14% ↑</td>
<td>AM: 1.51% ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PM: 11.4% ↓</td>
<td>PM: 5.97% ↑</td>
</tr>
<tr>
<td>Digoxin</td>
<td>1 mg, single dose</td>
<td>120 mg three times a day, single dose</td>
<td>AM: 2.17% ↓</td>
<td>AM: 7.62% ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PM: 3.19% ↑</td>
<td>PM: 2.22% ↑</td>
</tr>
<tr>
<td>Warfarin</td>
<td>30 mg, single dose</td>
<td>120 mg three times a day for 4 days</td>
<td>2.65% ↑</td>
<td>3.72% ↓</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>75 mg, single dose</td>
<td>120 mg twice daily, single dose</td>
<td>AM: 13.23% ↓</td>
<td>AM: 2.2% ↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*PM: 3.76% ↑</td>
<td>*PM: 7.5% ↑</td>
</tr>
</tbody>
</table>

AM: after morning dose; PM: after evening dose; * after second dose; ↑: increase in the parameter; ↓: decrease in the parameter
Table 4: Effect of Nateglinide on Pharmacokinetics of Coadministered Drugs

<table>
<thead>
<tr>
<th>Coadministered drug</th>
<th>Dosing regimen of coadministered drug</th>
<th>Dosing regimen of nateglinide</th>
<th>Change in C\textsubscript{max}</th>
<th>Change in AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyburide</td>
<td>10 mg once daily for 3 weeks</td>
<td>120 mg three times a day, single dose</td>
<td>3.18% ↓</td>
<td>7.34% ↓</td>
</tr>
<tr>
<td>Metformin</td>
<td>500 mg three times a day for 3 weeks</td>
<td>120 mg three times a day, single dose</td>
<td>AM: 10.7% ↑ PM: 0.40% ↑</td>
<td>AM: 13.3% ↑ PM: 2.27% ↓</td>
</tr>
<tr>
<td>Digoxin</td>
<td>1 mg, single dose</td>
<td>120 mg three times a day, single dose</td>
<td>5.41% ↓</td>
<td>6.58 % ↑</td>
</tr>
<tr>
<td>Warfarin</td>
<td>30 mg, single dose</td>
<td>120 mg three times a day for 4 days</td>
<td>R-warfarin: 1.03% ↓ S-warfarin: 0.85% ↓</td>
<td>R-warfarin: 0.74% ↑ S-warfarin: 7.23% ↑</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>75 mg, single dose</td>
<td>120 mg twice daily, single dose</td>
<td>2.19% ↑</td>
<td>7.97 % ↑</td>
</tr>
</tbody>
</table>

AM: after morning dose; PM: after evening dose; SD: single dose; ↑: increase in the parameter; ↓: decrease in the parameter

13  NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenicity: Nateglinide did not increase tumors in two year carcinogenicity studies conducted in mice and rats. Oral doses of Nateglinide up to 900 mg/kg in rats and 400 mg/kg in mice were tested, which produced exposures in rats approximately 30-40 times and in mice 10-30 times the human therapeutic exposure of nateglinide at a dose of 120 mg three times daily, based on AUC.

Mutagenesis: Nateglinide was not genotoxic in the in vitro Ames test, mouse lymphoma assay, chromosome aberration assay or in the in vivo mouse micronucleus test.

Impairment of Fertility: Fertility was unaffected by administration of nateglinide to rats at doses up to 600 mg/kg (approximately 16 times the human therapeutic exposure with a recommended STARLIX dose of 120 mg three times daily before meals).

14  CLINICAL STUDIES

14.1 Monotherapy

In a 24-week, double-blind, placebo-controlled study, patients with type 2 diabetes were randomized to receive either STARLIX (60 mg or 120 mg three times daily before meals) or placebo. Patients previously treated with antidiabetic medications were required to discontinue that medication for at least 2 months before randomization.

At Week 24, treatment with STARLIX before meals resulted in statistically significant reductions in mean HbA1C and mean fasting plasma glucose (FPG) compared to placebo (see Table 5). The reductions in HbA1C and FPG were similar for patient’s naïve to, and those previously exposed to, antidiabetic medications.

Table 5: Endpoint Results for a 24-week, Fixed Dose Study of STARLIX Monotherapy

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>STARLIX 60 mg three times daily before meals</th>
<th>STARLIX 120 mg three times daily before meals</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1C (%)</td>
<td>N=168</td>
<td>N=167</td>
<td>N=168</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.0</td>
<td>7.9</td>
<td>8.1</td>
</tr>
<tr>
<td>Change from baseline (mean)</td>
<td>+0.2</td>
<td>-0.3</td>
<td>-0.5</td>
</tr>
<tr>
<td>Difference from placebo (mean)</td>
<td>-0.5 a</td>
<td>-0.7 a</td>
<td>-0.7 a</td>
</tr>
<tr>
<td>FPG (mg/dL)</td>
<td>N=172</td>
<td>N=171</td>
<td>N=169</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>167.9</td>
<td>161.0</td>
<td>166.5</td>
</tr>
<tr>
<td>Change from baseline (mean)</td>
<td>+9.1</td>
<td>+0.4</td>
<td>-4.5</td>
</tr>
<tr>
<td>Difference from placebo (mean)</td>
<td>-8.7 a</td>
<td>-13.6 a</td>
<td>-13.6 a</td>
</tr>
</tbody>
</table>

* p-value ≤ 0.004
### 14.2 Monotherapy Compared to Glyburide

In a 24-week, double-blind, active-controlled trial, patients with type 2 diabetes who had been on a sulfonylurea for 3 or more months and who had a baseline HbA1C greater than or equal to 6.5% were randomized to receive STARLIX (60 mg or 120 mg three times daily before meals) or glyburide 10 mg once daily. Patients randomized to STARLIX had significant increases in mean HbA1C and mean FPG at endpoint compared to patients randomized to glyburide.

**Table 6: Endpoint Results for a 24-week Study of STARLIX Monotherapy Compared to Glyburide**

<table>
<thead>
<tr>
<th>HbA1c (%)</th>
<th>Glyburide 10 mg Once daily</th>
<th>STARLIX 60 mg three times daily before meals</th>
<th>STARLIX 120 mg three times daily before meals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (mean)</td>
<td>7.8</td>
<td>8.0</td>
<td>7.9</td>
</tr>
<tr>
<td>Change from baseline (mean)</td>
<td>0.3</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Difference from glyburide</td>
<td>1.0&lt;sup&gt;a&lt;/sup&gt;</td>
<td>0.9&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FPG (mmol/L)</th>
<th>Glyburide 10 mg Once daily</th>
<th>STARLIX 60 mg three times daily before meals</th>
<th>STARLIX 120 mg three times daily before meals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (mean)</td>
<td>9.44</td>
<td>9.67</td>
<td>9.61</td>
</tr>
<tr>
<td>Change from baseline (mean)</td>
<td>0.19</td>
<td>3.06</td>
<td>2.84</td>
</tr>
<tr>
<td>Difference from glyburide</td>
<td>2.87&lt;sup&gt;a&lt;/sup&gt;</td>
<td>2.66&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
</tbody>
</table>

<sup>a</sup> p-value <0.001

### 14.3 Monotherapy and In Combination With Metformin

In a 24-week, double-blind, active- and placebo-controlled study, patients with type 2 diabetes were randomized to receive either STARLIX alone (120 mg three times daily before meals), metformin alone (500 mg three times daily), a combination of STARLIX 120 mg (three times daily before meals) and metformin (500 mg three times daily), or placebo. Fifty-seven percent of patients were previously untreated with oral antidiabetic therapy. Patients previously treated with antidiabetic medications were required to discontinue medication for at least 2 months before randomization.

At Week 24, statistically significant reductions in mean HbA1c and FPG were observed with metformin monotherapy compared to STARLIX monotherapy, and the combination of STARLIX and metformin compared to either STARLIX or metformin monotherapy (see Table 7).

Compared to placebo, STARLIX monotherapy was associated with a statistically significant increase in mean body weight, while no significant change in body weight was observed with metformin monotherapy or combination of STARLIX and metformin therapy (see Table 7). Among the subset of patients previously treated with other antidiabetic agents, primarily glyburide, HbA1C in the STARLIX monotherapy group increased slightly from baseline, whereas HbA1C was reduced in the metformin monotherapy group (see Table 7).
Table 7: Endpoint results for a 24-week study of STARLIX Monotherapy and Combination with Metformin

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>STARLIX 120 mg three times daily before meals</th>
<th>Metformin 500 mg three times daily</th>
<th>STARLIX 120 mg before meals plus Metformin*</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>HbA1C (%)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>All</strong></td>
<td>N=160</td>
<td>N=171</td>
<td>N=172</td>
<td>N=162</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.3</td>
<td>8.3</td>
<td>8.4</td>
<td>8.4</td>
</tr>
<tr>
<td>Change from baseline (mean)</td>
<td>+0.4</td>
<td>-0.4 (^{\text{bc}})</td>
<td>-0.8 (^{\text{c}})</td>
<td>-1.5</td>
</tr>
<tr>
<td>Difference from placebo</td>
<td>-0.8 (^{\text{a}})</td>
<td>-1.2 (^{\text{a}})</td>
<td>-1.9 (^{\text{a}})</td>
<td></td>
</tr>
<tr>
<td><strong>Naïve</strong></td>
<td>N=98</td>
<td>N=99</td>
<td>N=98</td>
<td>N=81</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.2</td>
<td>8.1</td>
<td>8.3</td>
<td>8.2</td>
</tr>
<tr>
<td>Change from baseline (mean)</td>
<td>+0.3</td>
<td>-0.7 (^{\text{c}})</td>
<td>-0.8 (^{\text{c}})</td>
<td>-1.6</td>
</tr>
<tr>
<td>Difference from placebo</td>
<td>-1.0 (^{\text{a}})</td>
<td>-1.1 (^{\text{a}})</td>
<td>-1.9 (^{\text{a}})</td>
<td></td>
</tr>
<tr>
<td><strong>Non-Naïve</strong></td>
<td>N=62</td>
<td>N=72</td>
<td>N=74</td>
<td>N=81</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.3</td>
<td>8.5</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>Change from baseline (mean)</td>
<td>+0.6</td>
<td>+0.004 (^{\text{bc}})</td>
<td>-0.8 (^{\text{c}})</td>
<td>-1.4</td>
</tr>
<tr>
<td>Difference from placebo</td>
<td>-0.6 (^{\text{a}})</td>
<td>-1.4 (^{\text{a}})</td>
<td>-2.0 (^{\text{a}})</td>
<td></td>
</tr>
<tr>
<td><strong>FPG (mg/dL)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>All</strong></td>
<td>N=166</td>
<td>N=173</td>
<td>N=174</td>
<td>N=167</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>194.0</td>
<td>196.5</td>
<td>196.0</td>
<td>197.7</td>
</tr>
<tr>
<td>Change from baseline (mean)</td>
<td>+8.0</td>
<td>-13.1 (^{\text{bc}})</td>
<td>-30.0 (^{\text{c}})</td>
<td>-44.9</td>
</tr>
<tr>
<td>Difference from placebo</td>
<td>-21.1 (^{\text{a}})</td>
<td>-38.0 (^{\text{a}})</td>
<td>-52.9 (^{\text{a}})</td>
<td></td>
</tr>
</tbody>
</table>

\(^{\text{a}}\) p-value \(\leq 0.05\) vs. placebo  
\(^{\text{b}}\) p-value \(\leq 0.03\) vs. metformin  
\(^{\text{c}}\) p-value \(\leq 0.05\) vs. combination  
* Metformin was administered three times daily

In another 24-week, double-blind, placebo-controlled trial, patients with type 2 diabetes with HbA1C greater than or equal to 6.8% after treatment with metformin (greater than or equal to 1500 mg daily for at least 1 month) were first entered into a four week run-in period of metformin monotherapy (2000 mg daily) and then randomized to receive either STARLIX (60 mg or 120 mg three times daily before meals) or placebo as add-on to metformin. At the end of treatment, STARLIX 60 mg and 120 mg three times daily resulted in a statistically significantly greater reductions in HbA1C compared to placebo when added to metformin (-0.4% and -0.6% for STARLIX 60 mg and STARLIX 120 mg plus metformin, respectively).
Table 8: Endpoint Results for a 24-week Study of STARLIX Monotherapy as Add-on to Metformin

<table>
<thead>
<tr>
<th>HbA1C (%)</th>
<th>Placebo + metformin</th>
<th>STARLIX 60 mg + metformin</th>
<th>STARLIX 120 mg + metformin</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=150</td>
<td>N=152</td>
<td>N=154</td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.2</td>
<td>8.0</td>
<td>8.2</td>
</tr>
<tr>
<td>Change from baseline (mean)</td>
<td>0.01</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>Difference from metformin</td>
<td>-0.4 *</td>
<td>-0.6 b</td>
<td></td>
</tr>
</tbody>
</table>

* p-value 0.003 vs. metformin
b p-value < 0.001 vs. metformin

All STARLIX/placebo taken three times daily before meals; all metformin 1000 mg twice daily.

14.4 Add-On Combination Therapy With Rosiglitazone

A 24-week, double blind, multicenter, placebo-controlled trial was performed in patients with type 2 diabetes not adequately controlled on rosiglitazone 8 mg daily. The addition of STARLIX (120 mg three times per day with meals) was associated with statistically significantly greater reductions in HbA1C compared to placebo as add-on to rosiglitazone. The mean change in weight from baseline was +3 kg for patients treated with STARLIX compared to +1 kg for patients treated with placebo when added to rosiglitazone.

Table 9: Endpoint Results for a 24-week Study of the Effect of Adding STARLIX or Placebo to Rosiglitazone

<table>
<thead>
<tr>
<th>HbA1C (%)</th>
<th>Placebo + rosiglitazone 8 mg once daily</th>
<th>STARLIX 120 mg before meals + rosiglitazone 8 mg once daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=191</td>
<td>N=194</td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.4</td>
<td>8.3</td>
</tr>
<tr>
<td>Change from baseline (mean)</td>
<td>0.03</td>
<td>-0.7</td>
</tr>
<tr>
<td>Difference from rosiglitazone (mean)</td>
<td>-0.7 a</td>
<td></td>
</tr>
</tbody>
</table>

* p-value ≤ 0.0001

14.5 Add-On Combination Therapy With Glyburide

In a 12-week study of patients with type 2 diabetes inadequately controlled on glyburide 10 mg once daily, the addition of STARLIX (60 mg or 120 mg three times daily before meals) did not produce any additional benefit.

Table 10: Endpoint Results for a 12-week Study of the Effect of Adding STARLIX or Placebo to Glyburide

<table>
<thead>
<tr>
<th>HbA1C (%)</th>
<th>Placebo + glyburide 10 mg once daily</th>
<th>STARLIX 60 mg before meals + glyburide 10 mg once daily</th>
<th>STARLIX 120 mg before meals + glyburide 10 mg once daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=58</td>
<td>N=55</td>
<td>N=54</td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>Change from baseline (mean)</td>
<td>0.3</td>
<td>0.2</td>
<td>-0.02</td>
</tr>
<tr>
<td>Difference from glyburide (mean)</td>
<td>-0.1 a</td>
<td>-0.3 b</td>
<td></td>
</tr>
</tbody>
</table>

Placebo or STARLIX given 10 minutes prior to breakfast, lunch, and dinner; glyburide given with the breakfast dose of STARLIX or placebo.

* p-value 0.6959
b p-value 0.1246
HOW SUPPLIED/STORAGE AND HANDLING

How Supplied

60 mg
Pink, round, beveled edge film-coated tablet with “STARLIX” debossed on one side and “60” on the other.
Bottles of 100………………………………………………..NDC 0078-0351-05

120 mg
Yellow, ovaloid film-coated tablet with “STARLIX” debossed on one side and “120” on the other.
Bottles of 100………………………………………………..NDC 0078-0352-05

Storage and Handling
Store at 25ºC (77ºF); excursions permitted to 15ºC-30ºC (59ºF-86ºF). Dispense in a tight container, USP.

PATIENT COUNSELING INFORMATION

Administration
Instruct patients to take STARLIX 1 to 30 minutes before meals. Instruct patients that skip meals to skip their dose of STARLIX [see Dosage and Administration (2)].

Hypoglycemia
Inform patients that STARLIX can cause hypoglycemia and instruct patients and their caregivers on self-management procedures including glucose monitoring and management of hypoglycemia. Inform patients that their ability to concentrate and react may be impaired as a result of hypoglycemia. In patients at higher risk for hypoglycemia and patients who have reduced symptomatic awareness of hypoglycemia, increased frequency of blood glucose monitoring is recommended [see Warnings and Precautions (5.1)].

Drug Interactions
Discuss potential drug interactions with patients and inform them of potential drug-drug interactions with STARLIX.

Distributed by:
Novartis Pharmaceuticals Corporation
East Hanover, New Jersey 07936

©Novartis

T2017-31
March 2017